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Abstract. The complex intrinsic viscosity for a single simple ring polymer in the presence 
of both self-avoiding and hydrodynamic interactions is calculated using renormalisation 
group techniques. Results are compared with those for a linear chain and amplitude ratios 
to an order O( E )  ( E  = 4 - d, d being the spatial dimensionality) are given in the zero- 
frequency limit. 

1. Introduction 

The use of renormalisation group ( RG) techniques has made it possible to explore 
many universal properties of long flexible polymer chains. Whereas static properties 
of both dilute and semidilute solutions have been studied in great detail [l-41, only 
recently have quantitative calculations for time-dependent properties been performed. 
Of central interest among the transport properties of dilute polymer solutions are the 
diffusion constant [5], time-dependent correlation functions [6], relaxational spectra 
[7] and most importantly the intrinsic viscosity [8, 91. 

The minimal model (defined in 0 2) which has been studied within the RG framework 
gives many universal predictions for transport properties, which can be compared with 
experiment. These predictions, which have mainly been derived for flexible linear 
chains, can also be investigated for flexible simple (single) ring polymers, another class 
of experimentally interesting systems. In particular, comparison of transport properties 
of linear and ring polymers will enable one to answer the question of how ring formation 
will affect universal (critical) properties of flexible (Gaussian) polymer chains. We 
have recently [ 101 investigated explicitly time-dependent correlations for a simple ring 
polymer in the presence of hydrodynamic interactions and have extracted the transla- 
tional diffusion constant and the relaxational spectrum. The main purpose of this 
article will be the calculation of the intrinsic (complex) viscosity for a simple ring 
polymer in the presence of both self-avoiding and hydrodynamic interactions. 

The first calculation of the intrinsic viscosity has been performed within the 
Kirkwood-Riseman formalism [ 111. This formalism has the shortcoming that it does 
nor allow the calculation of explicitly time-dependent quantities, and that it is nor 
fully justified from the standard non-equilibrium statistical mechanics point of view. 
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In order to proceed beyond this approximation, we have as a first step in [8] investigated 
the complex intrinsic viscosity starting directly from the Green-Kubo formalism for 
a Gaussian chain in the presence of hydrodynamic interactions only. In the zero- 
frequency limit ( w  = 0) we found the Green-Kubo formalism and the Kirkwood- 
Riseman formalism to give identical results in lowest order (i.e. to O( E ) ,  where E = 4 - d, 
d being the spatial dimensionality). More recently in [9] we have presented the results 
for the complex intrinsic viscosity in the presence of self-avoiding interactions to O( E )  

and, extracting the w = 0 limit numerically, we concluded that to O( E )  the Green-Kubo 
and Kirkwood-Riseman formalism give different results. In principle, this is not 
unexpected, because the self-avoiding interaction modifies not only the equilibrium 
state, but also the dynamics of the chain-solvent system. Whereas the equilibrium 
state and solvent velocity field motion can also be treated within the Kirkwood-Riseman 
scheme, the modification of the chain motion due to the direct monomer-monomer 
interaction cannot be taken into account. 

However, as pointed out in [9], the o = 0 limit remained to be studied analytically. 
This is another purpose of the present paper. We will discuss, in parallel for rings 
and linear chains, all contributions to the momentum-flux autocorrelation function 
(see § 3) in lowest order in the self-avoiding and hydrodynamic interactions. From 
this, we can analytically extract both the finite- and the zero-frequency cases. Due to 
a peculiar cancellation of terms, we can show that the zero-frequency limit agrees (to 
lowest order) with the Kirkwood-Riseman formalism even in the presence of self- 
avoiding interactions (this corrects an error in [9]). 

Our paper is organised as follows. In § 2 we discuss the minimal model describing 
the coupled chain-solvent dynamics and an effective Lagrangian which allows for 
rings and linear chains to calculate general time-dependent correlation functions in 
the presence of self-avoiding and hydrodynamic interactions. In § 3(4) all contributions 
to the intrinsic viscosity in the presence of self-avoiding (hydrodynamic) interactions 
are determined and final results are presented for finite frequency and zero frequency. 
In § 5 we consider the combined effect of both self-avoiding and hydrodynamic 
interactions. Section 6 contains our conclusions, and in particular we will compare 
some of our findings with experimental results. 

2. Model and formalism for intrinsic viscosity 

The starting point of our investigation is the following set of Langevin equations 
describing coupled chain-solvent dynamics [ 121: 

together with the incompressibility condition V U = 0. In ( 2 . 1 ~ )  and (2.1 b),  ( ~ ( 7 ,  t)}?zo 
describes the conformation of a polymer with bare chain length No parametrised by 
a contour variable T at time t. [o= A,’ is the bare translational friction constant per 
chain unit, go the strength of the hydrodynamic interaction (the coupling to the solvent 
velocity field), u(x ,  t )  describes the solvent velocity field, q0 is the bare solvent viscosity, 
A is the Laplacian and p denotes the pressure. HE is the Edwards Hamiltonian [13] 
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with u0 being the bare excluded volume parameter and 0 , fGauss i an  random processes 
with zero mean and covariance given by 

(@(T, t)@(cT, S))=25,'6(7-cT)S(t-S)I (2.3) 

( f ( x ,  t ) f ( x ' ,  s ) ) = - 2 ~ o A S ( x - x ' ) S ( t - s ) l  (2.4) 

where I is the d x d unit matrix. One can show [3] that to O ( F ) ,  i.e. lowest order in 
the couplings, and by using the Markov approximation (see below) for the solvent 
velocity field, the coupled equations ( 2 . l a )  and (2 . lb)  are equivalent to the Kirkwood 
diffusion model. 

Calculations of dynamic correlation functions starting from ( 2 . l a )  and (2 . lb)  are 
straightforward, but for higher-order calculations it is desirable to have a field-theoretic 
method which allows a graphical representation of the perturbation terms, and also 
avoids the explicit averaging over the noise fields 0 and f in (2 . la)  and (2.1 b ) .  Such 
a field-theoretic description has been developed in [14] for the critical dynamics of 
stochastic models, including mode-coupling terms described by Langevin equations, 
and  we essentially follow their approach. Eliminating the pressure p (which basically 
enforces the condition V * U = 0) from (2.1 b ) ,  we obtain 

a 
- U ,  = -vo( iV)*A, + f _ ( x ,  t )  
at 

(2.5) 

with 

where I denotes the transverse part, and 

with A o =  5;' and 

We have a Gaussian white noise distribution w for the random fieldsf(x, t )  and 0( r, t ) :  

where ( t o ,  t l )  is some time interval. In order to calculate correlation functions from 
(2 . la)  and (2 . lb)  we can, instead of solving for c ( r ,  t )  and u ( x ,  t )  (in terms of @ ( T ,  t )  
and f , ( x ,  t ) )  and then averaging over 0,  f,, alternatively introduce a path probability 
density W{u,  c} for the stochastic variables U,  c via 

w ( { @ ) ,  { f > I t o s  t s t 1 )  dI@) W({c(t ) l ,  I u ( t ) l I t o s  ts t i )  diu}. (2.10) 
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Substituting 0 and f from ( 2 . 5 )  and (2 .7)  we obtain 

~ ( { c } ,  { U }  I to c t s t , )  - exp ~ ( { c } ,  { U }  I toc t c 1,) 

with 

J = -I ddx dt[d,u + ~o(iV)2A,]~~'[(iV)2]-'[dfu + vO(iV)*A,] 
4 5 5[: 

-4 IoN" dT I '  dt(d,c+ AoB)Ai'(d,c+ AoB). 
In 

(2.11) 

(2.12) 

In (2.12) we have dropped two additional terms which arise from the functional 
Jacobian for the change of variables @ +  c and f,+ U , .  These terms, which have to 
be added to (2.12), are proportional to the step function e ( t )  for t = 0. As is discussed 
in [ 151, the value which e( t )  takes at t = 0 depends on how the functional integral is 
discretised. If we choose O(0) # 0, then additional terms would subtract various 
contributions in every order to ensure causality, which is a necessary condition in the 
presence of response fields. We will assume O(0) = 0 in the following. 

From (2.11), which can be considered in the formal limit W({c}, { U }  I -a< t <CO), 

one can write down expressions for correlation functions in terms of path integrals. 
However, it is convenient to perform a Gaussian transformation in order to linearise 
the exponent in (2.12). This can be achieved by introducing two (imaginary) response 
fields, i ( x ,  t )  and Z(T, t ) .  Then we obtain 

W I u } ,  {cl)  = j d{i4  d{iu'} W({4,  {U'>, {c}, { U ) )  (2.13) 

with 

w({E), {4, {c), { U ) )  = exp(J{Z, 2, c, U } )  (2.14) 

where J = J o + J ,  can be considered as a Lagrangian and can be decomposed into a 
free and an interaction part. We have Jo = Jb" + J?' with 

(2.15) 

describing the conformation field and 

J a ) =  ddx dt[u'(x, t)v0(iV)'i(x, t )  - i ( x ,  t )d,u,(x,  t )  - i ( x ,  t)qo(iV)*u,(x, t)] 5 5  
(2.16) 

describing the solvent velocity field. The interaction terms containing the self-avoiding 
interactions can be written 

(2.17) 

and the hydrodynamic interaction terms cann be written 

(2.18) 
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We can now determine the free response propagator ( E (  r, t ) c (  U, t ' ) ) :  for the conforma- 
tion field of a simple polymer ring ( R ) .  Introducing normal coordinates into (2.15), 
which, in order to account for the periodic boundary conditions of a ring, are chosen 
in the form 

X x 
( 2 . 1 9 ~ )  1 1 )  ( 1 1  

C(7,  I ) =  1 Q T L  g k  + c QI?fi;?' 
!,=O k - . O  

with 
1 2  

= (2) COS (*) 
NO No 

NO NO 

k = 1,2,  . . . 

Q$) = (2) ' sin (*) k = 1,2 ,  . . . 

(2.19 b )  

(2.20a) 

(2.20b) 

(2 .20c)  

we obtain 

J;lR= I d t  { h O [ i ( ~ ) ( t ) i ( ~ ) ( f ) + ~ ~ ) ( f ) ~ ~ 2 ) ( f ) ] - ~ ~ ) ( t ) a , f ~ " - ~ i ; ? ' ( t ) a , f ~ ~ ' ( t )  
X 

k = O  

- AE[i',"( t)g(kl'(  f )  + iL2'( t ) f : " (  t ) ] }  

( ~ k ~ ( d ( t ) € ( k l ~ ( t ) ) ) U = O ( t ' -  r ) S " " ~ , ,  s,, exp[-At(r'- r ) ]  

(2.21) 

where h t = A , ( 2 ~ k / N , , ) ~ .  From (2.21) we find [ lo]  

(2.22) 

and 

( c ( T,  f ) c ( U, t ' ) ) = 
X 

Q vi Q yL ( &' ' ( t ) 6:' ( t r ) ) O  + Q ii) Q $' ( if ' ( t ) f L2 ( t '))" 
k .k  = U  k , k  = O  

=e([ ' -  t)GF(T, g1 t ' -  t )  (2.23) 

where 

(2.24) 

= n-k/ No .  From (2.23) we determine the static 

) G:( 7, (T I t ) = - 1 + 2 cos 2&( 7 - U )  exp( -A ,"t ) 
No ( ,1, 

is the Green function matrix and 
Green function G,*"(T, (TI for a polymer ring in the centre of mass system, using 

( 2 . 2 5 )  

where we have excluded the k = 0 mode in GS(r, U 1 t )  by putting &.'lo = [i2l0 = 0. 
Performing the sum over k we find the static correlation function in the centre of mass 
system 

d 
2 No 

( c * ( T )  c * ( ~ ' ) ) :  = hdN,,- id)T - 7 ' / + -  ( 7  - T')' (2.26) 
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where (c*(  T)c*( T ’ ) ) ~  = G,*R( T,  a) .  The correlation function ( c (  7) - C( 7’)): in the relative 
system (including the centre of mass motion) can be determined from (2.26) using 
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( [ C * ( T )  - C * ( T ‘ ) ] 2 ) : = ( [ C ( 7 ) - C ( T ’ ) ] 2 ) t  

(2.27) 

In order to determine the free response propagator for the conformation field of a 
linear chain (L),  we introduce into (2.15) normal coordinates defined by 

d 
No 

( c (  7 )  * c(  7’)): = d min( T, 7’) - - 77’. 

with 

k = 0. 

(2.28a) 

(2.28b) 

( 2 . 2 9 ~ )  

(2.29b) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

For the linear chain we find in the same way as above for the ring the static correlation 
function in the centre of mass system: 

d 

2 No 
( c * ( T )  c*(T‘))k=fdNo+- ( 7 2 + + ’ 2 ) - d  max(.r, T ’ )  (2.34) 

and  

( ~ ( 7 )  - C(T’));= d min(r, +). (2.35) 
We will need in the following sections various free time-dependent two-point correlation 
functions of the form ( ~ ( 7 ,  1 )  c ( a ,  s ) ) ~ .  For the ring ( R )  we have ( t  > s) 
( 4 7 ,  0 * c (a ,  S))oR/d 

2A,s No * 1 =N,,+1 c - { 1 + cos 2p ,̂(r - a )  exp[ --A;( t - s)] 
p = l  ( r p ) ’  

-cos 2 p ^ o ~ e x p ( - A ~ t ) - c o s  2p^a exp(-AFs)} (2.36) 
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- C O S $ ~ T  exp(-Akt) -cos Sou exp(-Aks)}. (2.37) 

In particular we have for the ring ( R )  
( E C ( ~ , S ) - C ( P , ~ ) 1 2 ) g R = ~ r I ~ - P / - ( 1 / ~ O ) ( Q . - P ) 2 1  (2.38) 

and for the linear chain (L)  

( [ C ( ~ , S ) - - C ( P , s ) l Z ) , L = d I ~ - P P I .  (2.39) 

Introducing Fourier transforms for the solvent velocity and the solvent velocity response 
field 

u ( x ,  t )  = exp(ik.  x ) u ( k ,  t )  

i ( x ,  t ) =  exp( ik .x ) i (k ,  t )  

5 d d k / ( 2 ~ ) d ,  we obtain for Jb” 

1, 
I, 

where Ik 

(2.40a) 

(2.40b) 

from which we determine the free solvent velocity field response function 

(i(k, t ) u , ( k ‘ ,  t ’ ) ) ,=@(t‘-  t ) s ( k + k ‘ ) P e x p [ - ~ , k ’ ( t ‘ - r ) ]  (2.42) 

and the free solvent velocity field autocorrelation function 

( u _ ( k ,  t ) u L ( k ’ ,  t ‘ ) )o  = 6 ( k  + k ’ ) ~  exp(-vok21r’- t l )  (2.43) 

with P = ( I  - k k / k 2 ) .  In the presence of hydrodynamic interactions we will use to 
lowest order, i.e. to O ( g : ) ,  the Markov (static) approximation for the solvent velocity 
field, which means we replace 

2 
e x p ( - ~ 0 k 2 1 t ’ - t t / ) ~ - - - - ; 6 ( t ’ - t ) .  (2.44) 

This replacement amounts to assuming that the relaxation of the solvent velocity field 
is much faster than that of the chain conformation. This approximation is equivalent 
to using the Oseen tensor. Using the effective Lagrangian given above, we can now 
calculate general correlation functions for linear chains and simple ring polymers in 
the presence of both self-avoiding and hydrodynamic interactions. 

In the following we will calculate the correlation function 

vok- 

C ( r )  = (J,(t)J,(O)) (2.45) 

where Jp( t )  is the xy  component of the momentum flux tensor for the polymer chain 
and ( ) is the average over the initial equilibrium ensemble and  over the Gaussian 
noise. From (2.45) we obtain the intrinsic viscosity according to the Green-Kubo 
formula [16] as 

(2.46) 
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where NA is Avogadro's constant and M is the molecular weight of the chain. We 
should note that the expression (2.45) is reliable only to the lowest non-trivial order 
( O ( E ) )  of the renormalised perturbation theory. In general (as has been pointed out 
already in [SI )  we have to consider the correlation function [17] 

C ( t )  = ( J ( r ) J ( O ) )  (2.47) 

where J (  t )  consists of the contribution from the solute polymer Jp and the solvent J,. 
Only if we can ignore the correlation between Jp and J ,  can we use equation (2.45). 
This is possible when the respective timescales are sufficiently different. To lowest 
order we can assume this to be the case, as we assume the Markov approximation (see 
above) to this order. To higher orders in go however, we cannot make this assumption 
a priori. 

In the next section we will outline the calculation of the momentum flux autocorrela- 
tion function (2.45) in the presence of self-avoiding interactions. 

3. Self-avoiding interactiions 

We will now outline the calculation of C (  t )  in the presence of self-avoiding interactions 
(i.e. a Gaussian chain in the vacuum) for both ring (R) and linear (L)  chains to O(uo).  
Jp(t) in (2.46) can be written as 

C (  t )  is the sum of the following contributions: 

where 

Introducing a generating functional, we can decompose CO(?) in a sum of four terms 

where Co0(t) is the free contribution and Col( t ) ,  . . . , Co3( t )  are O( uo) contributions. 
For the ring (R) we have 

CtO(t )  = 2  exp(-2A;t) 
p-1  

and for the linear chain (L)  
X 

Cbo(t)= exp(-2Akt). 
p = 1  

(3.5) 

The other terms can be expressed in terms of products of free correlations. Introducing 
a Fourier transform for the 8-function interaction we obtain for Col( t ) :  
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where A = c(  p, 0) - c(  a, 0). Using the free correlation functions given in (2.36) and 
(2.37) and integrating over U and 7 we obtain for the ring ( R )  

1 
x f -  [1 -cos 2p*b(a - p ) ]  exp(-2AF,t) 

p'=1  (7rp ' )z  

p = 1  (TP)' 
1 

x f -  [ l  -cos 2@0( p - a ) ]  

and for the linear chain (L) 

1 
x f -  (cos i o  p -cos 

p = 1  (d2 
1 x f ,Z (cos p*bp -cos $ha)' exp(-2Ab,t). 

p ' = l  (TP ) 

The contribution Co2(t)  is given by 

(3.9) 

1 
x f 7 [ 1 -cos 2p*,( a - p ) ]  exp( -2AFt) 

P = l  (TP) 

and for the linear chain (L)  

I ,  

(3.11) 

(3.12) 

Finally, the contribution Co3(r) is given by 

(3.13) 

(3.14) 
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for both rings (R)  and linear chains (L). Now we consider the contributions XI"=, &. 
We find 

where now A = c(  p, 3') - c(  a, s'). We obtain, performing the T and U integrations, for 
the ring (R)  

and for the linear chain (L) 

cs 

x ~ o s p * ~ p ( c o s p * ~ p  - c o ~ p * ~ a )  exp(-2Abt). 
p = l  

(3.16) 

(3.17) 

Next we consider the contribution CdO( t ) ,  

where A =  c(  p, s') - c ( a ,  s'). We find C4a(f) = C , , ( t )  for both ring (R) and linear 
chain (L). The contribution Cz,(t) is given by 

C,,(t) = uo I N o  d u  I N o  d a  I N o  dp Ik k', exp(-~k2(A2),/d) 

where A = c(  p, t )  - c(  a, t ) .  We obtain for the ring (R)  

cpa( t )  = -;uoNo joN"da  j o N o d p  jk k~exp{-fk2[la-pl-(1/No)(a-p)2]} 

1 
X ,f 7 [ 1 -cos 2 i 0 (  p - a ) ]  exp( -2AFt) 

p = l  (i ,rp)- 

and for the linear chain (L)  

" 1  
( c 0 s i 0 p   COS^^^^) cosp*,p exp(-2Akt). 

(3.19) 

(3.20) 

(3.21) 
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For C,,(t) we find 
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(3.22 

R) and linear chains ( L )  

(3.23 

with A = c(  P,  s) - c(  cy, s).  This gives for the ring ( R )  

1 
[COS 2p^b(a - P )  - 11 exp(-2AF,s) 

and for the linear chain (L)  

Jc 

X 1 COS p^oP(~os  Fop -cos boa) exp(-2Abt) exp(2Ais) 
p = l  

Next we consider C4,,(t), 

(3.25) 

(3.26) 

(3.27) 
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with A as before. We find C,b(t) = c]b(t) for both ring (R)  and linear chains (L). 
Now we determine c,b(t): 

c2b(t)  = - U 0  loNn d a  loNn d a  loNo d p  5 k:k:. exp(-$k2(A2),/d) 
k 

(3.28) 
a2 

x 3 I (A,c,(S ))dA,.c,.(a))o(A,.c,.( PI t ) ) o  

where A = c (  p, t )  - c(  a, t ) .  Evaluation of this contribution gives for the ring (R) 
6=LT 

and for the linear chain (L)  

1 
x f ~ ( c o s p * b p  - c o ~ p * b a ) ~ e x p ( - 2 A ~ , t ) .  

p ' = l  (.rrP ) 
(3.30) 

Finally, we consider c 3 b (  t ) :  

c3b(t) = -uo loNo d.r loNn d a  loNo d p  k:k: exp(-ik*(A'),/d) 

where A = c(  p, 0) - c(  a, 0). We find for both the ring (R)  and the linear chain (L)  
c 3 b ( t )  = c,b(t) .  Therefore c b ( t )  = 2c lb ( t )+2c2b( t ) .  Collecting all terms, we 
find to O(uo):  

(3.32) 
Observing a cancellation between Co2( t )  and a part of Clo(  t )  + C2(I(  t )  and a partial 

( t ,  = t ,  + + 2( c 0 2 (  t )  + ci (I ( + C 2 a  ( t ,  + cl b ( t ,  + C 2 b  ( t ) ) .  

cancellation between C , , ( t )  and 2Clb(t)+2C2b(t), we secure for the ring (R):  

x exp{ -$k'[ la - p 1 - ( 1/ No)(  a - p )'I} 

x [ l -~os2p^ , , (p - -cu) ]exp( -2A~t )  
X 

p= 1 

1 x f  f- [cos 2p*,( p - a )  - l][cos 2&(p  - a )  - 11 
p = l  p ' = l  (7rp'I2 
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and for the linear chain (L):  

C L ( ? ) =  
iT 

e~p(-2Akr)+2v~N,~A,,t 10NOda i:'dp 1 ktexp(-fk21a-Pl) 
p = l  k 

Jt 

x (cos p^o/3 -cos $(,a)' exp(-2Akt) 
p = 1  

+ 4vo io d a  loN0 dP 1 k',kf exp(-$k21a - P I )  
0 h 

1 
x f  f- (cos top -cos P ,̂a)? 

p = l  p ' = l  (TP')* 

- A o  10'd.s exp(-2A;t) exp(-2Abs) exp(2Abs) . 1 
Now we can study the zero-frequency ( w  = 0) limit. We find for the ring (R)  

10Jtdf C R ( t ) = & ~ , N ? , + ~ v 0 l o N ~  1 '"da loNo d p  { k', 
0 k 

x exp{-ik'[la -P I  - (1/ No)(cy -/3)2]} 

1 
x f y [ 1 - c 0 s 2 p * , ( p - a ) ] .  

p = l  (v) 

(3.34) 

(3.35) 

Note the complete disappearance of the double sum in (3.33) for this limit. This is 
the reason why, although unexpected on physical grounds, we find the w = 0 limit to 
agree with the Kirkwood-Riseman formalism. Performing the momentum integration 
and summing up, with 

(3.36) 

we obtain in d = 4 - F dimensions 

x [la - P I  - (1/ N,)(a - p ) 2 ] - 3 f r ' 2  
x ( P  - LY )'[ 1 - ( 2 / N o ) ~ a  - P I  + ( I /  No)( P - a) ' ] .  

Performing the remaining contour integrations, we find, using 

~ O ' d x x " ( l - x ) D =  r ( a  + i ) r ( b + i )  
T ( a +  b + 2 )  

[ o x d t C R ( r ) = & < O N t  (:+In No)]. 

(3.37) 

(3.38) 

(3.39) 
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Renormalisation is performed with 

(3.40 b ) 

( 3 . 4 0 ~ )  

uo = (3.40d) 

where L is a length scale. In lowest order we use Z , = ~ - ( ~ / E ) [ U / ( ~ T ) ~ ] ,  ZN = 
1 + ( ~ / E ) [ u / ( ~ ? T ) ~ ]  and we find at the fixed point u * / ( ~ T ) ' = $ E  (free-draining self- 
avoiding limit), putting v0 = 1, 

(3.41) 

where v is the Flory exponent v = $ + & E  and z is the dynamical critical exponent 
z = 2 +  1 /  v. (To lowest order the exponent v is the same for a ring and  a linear chain 
[181.) 

For the linear chain (L) we obtain 

= (cos top -cos 
hP)* x c  

p = l  

Using 

(cos top -cos p^o.)2 
( TPI4 

z 
p = 1  

and performing the remaining contour integrations, we obtain 

(3 -42) 

(3.43) 

(3.44) 

Renormalisation and exponentiation of the result at the fixed point u * / ( ~ T ) ' =  Q E  gives 

(3.45) 

This result has been derived in [ 1 1 1  employing the Kirkwood-Riseman formalism. We 
should note that due to a computational mistake we concluded in [9] that the Green- 
Kubo and K R  formalisms give different results to lowest order. 

Let us now consider C ( t )  for t finite. In  order to obtain a result which is valid in 
the large-r limit we cannot (after performing the renormalisation and  inserting the 
fixed-point values) naively exponentiate the results to O ( E ) .  Rather we have to use 
the idea of singular perturbation theory [ 191 and exploit the asymptotic behaviour of 
the relaxation times as dictated by the renormalisation group equation [3]. This 
procedure (see [8] for a discussion) amounts to introducing an  effective eigenvalue 
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for the relaxation spectrum by exponentiating single sum terms which have prefactors 
linear in the time t. To O ( E )  we find the relaxation spectrum for a ring (R):  

(3.46) 

where AFp is the reciprocal of the relaxation time of the doubly excited p mode. AFP/2AF 
describes the interference effect of two p modes in the presence of self-avoiding 
interactions. A; is the eigenvalue which appears in the calculation of, for example, 
the correlation function ( ~ ( 7 ,  t )  C(T, 1)) to O(v,). We find 

3 3  1 2 F / U  A = -( 1 -) 27rp (2) exp [ $ E ( f - ci(27rp) --+- ---T AR(2p))]. 
, l N  2 2 ( T I -  

(3.47) 

In (3.46) and (3.47) we have introduced the functions 

AR( p ) = - 7rp[ si( 7 ip )  + $7r] + 2[ ci( 1 7rp I )  - 9 - In( I 7rp I)] ( 3 . 4 8 ~ )  
~ “ ( p )  = 7rp[si(.rrp)+$~] (3.48b) 

BR(p)  = P[Ci(l..Pl) - l n ( l d ) l  ( 3 . 4 8 ~ )  
where f is Euler’s constant, ci(x) = -5: d t  cos t / t  and si(x) = -j: d t  sin t / t .  Note that 
A, = P*+~” asymptotically as required by the renormalisation- group [3,6]. 
linear chain (L) we have 

[ l - ( - l )P]  1 7r 
[50BL(2p) - 35BL( p )  - 27BL(3p) 

) I  +4BL(4p)-  12pAL(2p)+ 12pAL(p)] 

where 

For the 

(3.49) 

(3.50) 

( 3 . 5 1 ~ )  
(3.51 b) 

Inserting A,,,, also in  the double sums in (3.33), we obtain (at the fixed point u*/(27r)’ = 
$ E )  after performing a Fourier transform, the real and imaginary part of the complex 
intrinsic viscosity [ ? j (G) ]  = ( N A / M k T ) C ( G )  valid for both the ring (R)  and the linear 
chain (L):  
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(3.52b) 

In ( 3 . 5 2 ~ )  and (3.52b) a = 2  for the ring (R)  and  a =  1 for the linear chain (L)  and 
we have introduced new universal quantities ipp = 2hPp/A,, ( p  = l ) ,  c ( G )  = C(W)A,  
( p  = l ) ,  W = w / A , ,  ( p  = 1). Besides we have defined 

ER( p)  = fQ,”d” (3.53) 

where 0;;” is the p = p ‘  contribution of the double sum in (3.33), 

The double sum contribution ( p # p‘)Q,Rd?’ is given in the appendix. For the linear 
chain (L) we have 

EL( p )  = 3 @j2) (3.55) 
where 

4 (l-(-l)’) 1 T +- - (50BL(2p) -35BL(p)  -27BL(3p) 
24 (.rrP)’ 

Qkj2) = T (.rrp)4 

+4BL(4p) - 12pAL(2p)+ 12pAL(p)) (3.56) 

and  the double sum contribution ( p  # p’)QbjfJ is given in the appendix. This concludes 
our discussion of self-avoiding interactions. 

4. Hydrodynamic interactions 

Using the effective Lagrangian J’,2’ we obtain to O(gi) the following contributions to 
C (  t ) :  

C ( t )  = C o ( r ) + 2 C , ( r ) + C , ( t )  (4.1) 
where 
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(4.4) 
Introducing a generating functional as in the case of self-avoiding interactions, we can 
express all averages in (4.2)-(4.4) again as products of free correlation functions. Then 
one can show [8] that C, ( t )  can be written as a sum 

)o 

a‘ a’ 
a T -  au 

X & ( P ,  t’’b;(C(p, t ” ) ,  t ” )c , ( . r ,  t ) ? C X ( T ,  f ) c , ( u , O ) - - - I . c x ( ~ , o )  . 

C l (  t ,  = Cl 1 ( t ,  + c12( t ,  + C13( r ,  + c14( t ,  (4.5) 
and that 2CI4(  t) will cancel the contribution C2( t ) .  We then find (putting g i  = 7;’ = 1 
as both couplings are not renormalised to O ( e ) )  using the Markov approximation as 
mentioned in Q 2: 

C ( t )  = CO([) +2Cll( l )  +2C12(t) +2Cl,(t)  (4.6) 
where Co(t) is the free contribution already given in (3.5) and (3.6). The other 
contributions are given by 

for the ring (R)  and 

X 

X c ( r p ) ‘  cos p*ocy cos exp(-2Abt) 
p = l  

for the linear chain (L),  

Cp2( t )  = 4N;’ /oh’” d a  loNn d p  $ kS( 1 - k f /  k 2 )  

x exp{-$k’[ 1 cy - p I - ( 1/ No)(  cy - p )’I} 
x x  

x c [ C O S 2 p * o ( a - p ) - 1 ] [ 1 - c o s 2 p * ~ ( a - p ) ]  
p = 1  p = I  

x lo‘ ds  exp( -2AFs) exp[ - 2 A 3  t - s)] 

x x  

x 1 cos s o p  (cos po. - cos cop) cos 6;. (cos @;a -cos $ ; p )  
p = 1  p ’ = l  

(4.8) 

(4.9) 

x lo‘ d s  exp(-2Abs) exp[-2Ab(f -s)] (4.10) 
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and finally 

x x  

x [cos 2 3 d a  - p )  - 1][1 -cos 2&(a - P ) ]  
p = 1  p ' = l  

X lof d s  exp( -2A;s) exp[ -2A ;,( t - s)] 

O C X  

x cos $op(cos $oa -cosp*op) cos p*;a(cos $&a -cos P^;p, 
p=1 p ' = l  

x lof d s  exp(-2Aks) exp[-2A$,(t-s)]. 

(4.11) 

(4.12) 

Collecting terms, we find for the ring (R) in the presence of hydrodynamic interactions 

CR( t )  = 2 
X 

exp(-2A;t) - 16rNi3 loNo d a  loNo d p  $ (1 - k;,/ k 2 )  
p = l  

x exp{ -tk2[ I a - p I - ( 1 / N ~ )  ( a - p 1'3 } 
= 

x 1 ( r p ) '  cos 2p ,̂,( a - p )  exp( -2A;t) 
p = 1  

p = l  p ' = l  

x lof d s  exp( -2A:s) exp[ -2AF( t - s)]  

and for the linear chain (L) 

(4.13) 

CL(t)= 1 X exp(-2Abt)-4tN,'l:da lo NO d p  ~ k $ ( l - k ~ , / k 2 ) e x p ( - i k ' ~ o p ~ )  

p = 1  

X 

X 2 ( r p ) '  cos p*oa cos exp(-2Abt) 
p = 1  

. 3 c 3 :  

x 1 c cos p^op(cos p^oa -cos Fop) cos p^&a(cos &)a -cos p ^ $ )  
p = l  p = I  

r r  
ds exp( -2Abs) exp[ -2Ak4 t - s)]. (4.14) Jo 

Now we consider the zero-frequency ( w  = 0) limit. We know from our previous study 
[8] that for the case of hydrodynamic interactions Green-Kubo formalism and Kirk- 
wood-Riseman formalism give identical results to lowest order (0( E ) ) .  Following the 
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same steps which have been performed in the case of self-avoiding interactions in 0 3, 
we obtain for the ring (R):  

loz dt C"( t )  =&N$1 - 50(2 . i r ) -2(2 . i rN0)"2(3/2~ +i)+50(2.ir)-2 :I. 
Performing renormalisation with 

(4.15) 

( 4 . 1 6 ~ )  

(4.166) 

( 4 . 1 6 ~ )  

Where Z N  = 1 and Z, = 1 -3t/8.rr2s to lowest order, we obtain at the fixed point 
.$* =;.ir2& (non-draining Gaussian limit): 

(4.17) [ q]"MkT/ NA = h ~ ( 2 7 r N ) ~ "  exp(&) 

where d = 4 - E and v = 5.  For the linear chain (L) we obtain 

MkT , 
N A  

[TIL--- - ,8~(2. i rN)d" exp(is)  (4.18) 

in agreement with [ll]. 

fixed point t* = $.rr2&: 
Introducing as before effective eigenvalues for the relaxation times, we find at the 

with 

for the ring (R),  and 

Abp=2A:exp{ & [ g ( - 4 - 6 A L ( p ) + 2 A L ( 2 p )  1 

1 +- (11BL(p) - 10BL(2p)+3BL(3p)) 
2P 

with 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

for the linear chain (L). Then we can write the real and imaginary part of the complex 
intrinsic viscosity 7 j (G)  = ( N A / M k T ) C ( G )  in the general form: 

( 4 . 2 3 ~ )  
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Im C ( W )  = a 

(4.23b) 

where a = 2 for the ring (R) and a = 1 for the linear chain (L)  and QpRd!) and Q $ )  
( p  # p ' )  are given in the appendix. This concludes our discussion of the hydrodynamic 
interactions. 

5. Self-avoiding and hydrodynamic interactions 

To lowest order ( O ( E ) )  there are no cross terms between self-avoiding and hydro- 
dynamic interactions and therefore we can just add the results (3.33) and (4.13) for 
the ring (R)  and (3.34) and (4.14) for the linear chain (L)  (counting the free term only 
once). Considering the w = 0 limit, we find for the ring (R) 

Performing the renormalisation as before with 
2 u  

Z,=l+-- 
E ( 2 T ) 2  

2 u  3 
E ( 2 ~ ) '  8 7 ~ ' ~  5 - 1 -- 

. E -  

to lowest order, we secure at the fixed point U * / ( ~ T ) *  = t ~ ,  5 * / ( 2 ~ ) ~  = 1 s  (non-draining 
self-avoiding limit) for the ring (R) 

with d = 4 - E and v = ++ ke. For the linear chain (L),  we secure [ 111 

For finite frequency w we can write the real and imaginary parts of the complex 
intrinsic viscosity i j ( W )  = (NA/  M k T ) c ( W )  in the general form 

1 " 
Re c(W)= a - exP(bE ' (P) )  

p = l  A p p (  1 + W 2 / h i p )  

(5.4a) 
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As before, a = 2 for the ring ( R )  and a = 1 for the linear chain (L).  We have here 
introduced the function &‘ = &QhL:: where both ob,! and Ob’,! have been defined 
already. We have defined (as in 0 3) A,, = 2A,,/A,, ( p  = 1) and W = w / A , ,  ( p  = 1). In 
the presence of both types of interactions we find for the relaxation spectrum for a 
ring (R) :  

A Fp = 2 A ex p{ E [ Q * + & Q :j ’ / ( .rrp ) ’I} (5.5) 

with 

7 - E / 4  --E/4 
A,  R 1  =-(””)- (k) 

2 7 ’ ~  N 

For the linear chain (L) we have 

2 - ~ / 4  - E / 4  AL=-(“P) 1 (k) 
2 7 ’ ~  N 

1 si(2np) 1 

(TP) TP 2P 
+ + ci ( .rrp ) - -i, - 7 ( 1 - ( - 1 ) ) - - - -) ] . ( 5.8 1 

Q,”d”, @L2’ have been given in (3.54) and (3.56), while Q,”d”, QbL” are given in the 
appendix. In order to give an example for the universal quantities presented here, we 
have plotted Abp(p) (figure 1) and the real and imaginary parts of the normalised 
intrinsic viscosity (figure 2) for a linear chain (L). 

2000, 

i 
, A  1 0 0 0 ~  
-s 

P 
Figure 1. The normalised effective eigenvalue ibp  for a linear chain ( L )  plotted as a function 
of p .  
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0 10 20 30 40 50 - 
W w 

Figure 2. ( a )  The storage part (real part) of the normalised complex intrinsic viscosity 
ijF(6) (see equation ( 5 . 4 ~ 7 ) )  expressed in universal quantities for a linear chain (L)  in 
d = 3 ( E  = 1)  dimensions. ( b )  The loss part (imaginary part) of the normalised complex 
intrinsic viscosity q : ( W ) / G  (see equation (5 .4b) )  expressed in universal quantities for a 
linear chain (L) in d = 3 ( E  = 1 )  dimensions. 

6. Conclusions 

We have presented the calculation of the intrinsic viscosity for simple ring polymers 
and linear chains in the presence of both self-avoiding and hydrodynamic interactions, 
starting from the Green-Kubo formula. The calculation was performed to lowest order 
in the couplings and we have derived the universal functional form of the intrinsic 
viscosity to O( E ) .  

From our results given in 00 3-5,  we can derive universal amplitude ratios [ 77IR/[ 77IL 
in the zero-frequency limit. In the absence of self-avoiding and hydrodynamic interac- 
tions we obtain, from equations (3.5) and ( 3 . 6 )  after performing the time integration, 
the ratio 

[771oR/[771oL=5. ( 6 . 1 )  

In the presence of self-avoiding interactions only, we find 

[ 77IR/[ 77IL = 5 exp(&) = 0.573(d = 3 ) .  ( 6 . 2 )  

In the presence of hydrodynamic interactions only, we find 

[77]R/[77]L=;exp(-&~) = 0 . 4 8 6 ( d  = 3 ) .  ( 6 . 3 )  

[ ~ ] " / [ 7 7 ] ~ = 5  exp(ge)  = 0.561(d  = 3 ) .  ( 6 . 4 )  

We should note that although the functional form of the intrinsic viscosity (as of any 
other physical quantity) can be determined from the RG equation, the exponentiation 
of the O ( E )  terms chosen here is only one possible choice. There is an inevitable 
ambiguity in postulating the correct interpolation formula from a perturbative calcula- 
tion (e.g. the E expansion). 

Using methods other than RG one can write the zero-frequency limit of the intrinsic 
viscosity according to [20] as a product of the mean-square radius of gyration S2 times 

In the presence of both self-avoiding and hydrodynamic interactions, we find 
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a sum over eigenvalues A. In these theories both S2 and the eigenvalues A depend on 
a parameter which describes the influence of self-avoiding interactions. Then it is 
certainly unexpected to find such a simple universal ratio as is obtained in equation 
(6.2). The fact that we find [77IR/[vlL in the presence of self-avoiding interactions to 
be a universal number, independent of the (renormalised) chain length N, stems from 
the finding reported in [18] that, to lowest order in E ,  linear chains and simple rings 
have the same critical exponents (i.e. the dependence on N is the same). Of course, 
it is not clear if this is also valid to higher orders in a RG calculation. 

Besides its simplicity, we find our results, e.g. (6.2), also to agree with the ratio for 
the mean-square radius of gyration S 2  [21] 

( s ~ ) ~ / ( s * ) " = $  exp(ge) .  (6.5) 

Whereas results from other than RG calculations [20] predict [ 77IR/[ 773" = 0.662 in the 
absence of self-avoiding interactions, it seems that in [20] and [22] there are opposing 
conclusions about the influence of self-avoiding interactions on the ratio [ 77IR/[ 77IL. 
Physically, in agreement with equation (6.5), we expect that ring polymers exhibit 
properties having a greater sensitivity with respect to self-avoiding interactions than 
have linear chains. Comparing (6.4) to (6.3) we conclude that, at least to O ( E ) ,  the 
presence of self-avoiding interactions increases the ratio of [ 77IR/[ 771". In order to 
compare with experimental results, we should point out again that our ratios to O( E )  

are independent of the chain length N and that the RG predictions are only valid in 
the asymptotic ( N  + C O )  regime. Results reported in [22] give for the ratio [ ? IR/ [  77IL 
measured for cyclic and linear PDM (CH,S,O)x values between 0.58 and 0.67 depending 
on the type of solvent. The ratio [ 77IR/[ .I]'= 0.58 determined for cyclohexane (a  good 
solvent) compares quite well with our result, equation (6.4). The ratio [ 77IR/[ 771" = 0.67 
in a 2-butanone ( a  &solvent), however, is much larger than our result (equation (6.3)). 
At present we do not see the possibility of making a more rigorous comparison with 
experiment. Judging from the experimentally investigated N dependence it seems that 
our asymptotic ( N  + a) results are not applicable to most of the experiments performed 
so far. From the theoretical point of view there are two ways to improve the present 
situation. 

One way is to perform our calculation in a restricted geometry where N can be 
finite. This is of considerable difficulty but certainly would allow a better comparison 
with available experimental data and possible numerical simulations. The second and 
easier achievable way is to perform a static calculation to see if, to O ( e 2 ) ,  the critical 
exponents for linear chains and simple rings are still the same, or if there is a different 
dependence on N. In the latter case a fixed result like (6.2) would not be valid to 
O ( E * ) .  Instead we would then find a N-dependent ratio [77IR/[q]" in the presence of 
self-avoiding interactions. 

Finally, we would like to comment on the finite-frequency behaviour of the intrinsic 
viscosity. As the effective eigenmodes A,,-p'" asymptotically, we find that in the 
large-w limit the sums over p which appear in real and imaginary parts of c ( W )  can 
be approximated by integrals 

and therefore [77](w) - w"'" - '  . This gives for both ring and linear chain the predictions 
[ 77](w) - w-0.s31 in the presence of self-avoiding interactions only [ 77]( w )  - w-0 ,37s  in 
the presence of hydrodynamic interactions only and [77](w) - w-0.438 in the presence 
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of both interactions ( d  = 3). In order to have a quantitative comparison with experi- 
mental data (for w finite) one needs to have simultaneous measurements of [ 7 7 ] ( w )  
and either A,, ( p  = 1) or A,, ( p  = 1) (since we have a relation between A,, and A,). 
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Appendix 

In this appendix we give the double sum contributions to the complex intrinsic viscosity 
for the ring (R) and the linear chain (L)  in the presence of self-avoiding interactions 
(2) and hydrodynamic interactions (1): 

Q,”d*’ = &{( 1,’ .rr2)[30AR(2p + 2p’) + 30AR(2p - 2p’) - 60AR(2p’) - 60AR(2p)] 

+ 2( p +p’)2CR(2p + 2p‘) + 2( p -p’)2CR(2p - 2p’) - 4p2CR(2p) 

-12(p+p‘)BR(2p+2p’)-  12(p-p’)BR(2p-2p’)} (AI )  

- 4p” C R (  2p’) + 24pBR( 2p) + 24p’BR( 2p’) 

Qy = -(1/27r2){(-1),+ (-1y’-  (-1),+,’- 1) 

-%G~(P,P’)+G,(P,  -p’)+G,(p,p’)+G,(p’,p) 

-p2AL(p)  - p ‘ 2 A L ( p ’ ) + f ( p + p ’ ) 2 A L ( p + p ’ ) + ~ ( p - p ‘ ) 2 A L ( ~ - p ’ ) ]  
(‘42) 

where 

G,(P, P’) = -% P + p’)BL( P + P‘) - 8 p  +p’)BL(2p + 2p’) 

and 
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The remaining double-sum contributions which appear in ( 4 . 2 3 a )  and ( 4 . 2 3 b )  are 
given by 

QpRd!)=AR ( 2 p  - 2p’)  + A R ( 2 p  + 2 p ‘ )  - 2 A R ( 2 p )  - 2 A R ( 2 p ’ )  (A51 

Qkj!’= G , ( p , p ’ ) + G z ( p , p ’ ) + G , ( ~ ,  - p ’ ) + G z ( p ’ , P )  

+ 2+2AL(  p )  +2AL( p ’ )  - AL( p + p ’ )  - AL( p - p ’ )  (A61 

with 

1 
{ 2 B L ( p + p ‘ ) - B L ( 2 p + p ’ )  

2 ( P + P ’ )  
GI(P, p ’ )  = 

1 
G2( p ,  p ’ )  = - { 2 B L ( 2 p )  -4BL(p)  + 2 B L (  p + p ’ )  + 2 B L (  p - p ’ )  

2P 
- B L ( 2 p + p ’ )  - B L ( 2 p  - p ’ ) } .  (A81 

Finally, the single sums defined in equations (5.5) and (5.7) are given by 

Q p ” d 1 ) = A R ( 4 p )  - 4 A R ( 2 p )  (A91 

(‘410) Qk;” = 1 +$AL(  p )  - i A L ( 2 p )  - (  l /Sp)[ l lBL( p )  - 1 0 B L ( 2 p )  + 3BL(3p)]. 
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